首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   63篇
  免费   2篇
  2021年   1篇
  2019年   3篇
  2017年   2篇
  2016年   7篇
  2015年   3篇
  2013年   18篇
  2012年   2篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2008年   3篇
  2007年   1篇
  2006年   3篇
  2005年   3篇
  2004年   4篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1997年   1篇
  1986年   2篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1977年   1篇
排序方式: 共有65条查询结果,搜索用时 15 毫秒
41.
We develop a heuristic procedure for partitioning graphs into clusters of nodes such that each cluster of nodes induces a connected subgraph with the objective of minimizing the differences within clusters as measured by the total differences between all pairs of nodes of a cluster. We apply our procedure to determine optimal delivery zones for community sections of a major newspaper while including a number of operational constraints. Our results demonstrate a 18–56% improvement in the total differences within the zones designed over the usual intuitive heuristics. Given the magnitude of the revenue generated by larger local newspapers through zoning, our method demonstrates how better zoning can significantly enhance the value of segmentation. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2005.  相似文献   
42.
Standard approaches to classical inventory control problems treat satisfying a predefined demand level as a constraint. In many practical contexts, however, total demand is comprised of separate demands from different markets or customers. It is not always clear that constraining a producer to satisfy all markets is an optimal approach. Since the inventory‐related cost of an item depends on total demand volume, no clear method exists for determining a market's profitability a priori, based simply on per unit revenue and cost. Moreover, capacity constraints often limit a producer's ability to meet all demands. This paper presents models to address economic ordering decisions when a producer can choose whether to satisfy multiple markets. These models result in a set of nonlinear binary integer programming problems that, in the uncapacitated case, lend themselves to efficient solution due to their special structure. The capacitated versions can be cast as nonlinear knapsack problems, for which we propose a heuristic solution approach that is asymptotically optimal in the number of markets. The models generalize the classical EOQ and EPQ problems and lead to interesting optimization problems with intuitively appealing solution properties and interesting implications for inventory and pricing management. © 2003 Wiley Periodicals, Inc. Naval Research Logistics, 2004.  相似文献   
43.
A generalized parallel replacement problem is considered with both fixed and variable replacement costs, capital budgeting, and demand constraints. The demand constraints specify that a number of assets, which may vary over time, are required each period over a finite horizon. A deterministic, integer programming formulation is presented as replacement decisions must be integer. However, the linear programming relaxation is shown to have integer extreme points if the economies of scale binary variables are fixed. This allows for the efficient computation of large parallel replacement problems as only a limited number of 0–1 variables are required. Examples are presented to provide insight into replacement rules, such as the “no‐splitting‐rule” from previous research, under various demand scenarios. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 40–56, 2000  相似文献   
44.
45.
We present a validation of a centralized feedback control law for robotic or partially robotic water craft whose task is to defend a harbor from an intruding fleet of water craft. Our work was motivated by the need to provide harbor defenses against hostile, possibly suicidal intruders, preferably using unmanned craft to limit potential casualties. Our feedback control law is a sample‐data receding horizon control law, which requires the solution of a complex max‐min problem at the start of each sample time. In developing this control law, we had to deal with three challenges. The first was to develop a max‐min problem that captures realistically the nature of the defense‐intrusion game. The second was to ensure the solution of this max‐min problem can be accomplished in a small fraction of the sample time that would be needed to control a possibly fast moving craft. The third, to which this article is dedicated, was to validate the effectiveness of our control law first through computer simulations pitting a computer against a computer or a computer against a human, then through the use of model hovercraft in a laboratory, and finally on the Chesapeake Bay, using Yard Patrol boats. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 247–259, 2016  相似文献   
46.
In this article, we define two different workforce leveling objectives for serial transfer lines. Each job is to be processed on each transfer station for c time periods (e.g., hours). We assume that the number of workers needed to complete each operation of a job in precisely c periods is given. Jobs transfer forward synchronously after every production cycle (i.e., c periods). We study two leveling objectives: maximin workforce size () and min range (R). Leveling objectives produce schedules where the cumulative number of workers needed in all stations of a transfer line does not experience dramatic changes from one production cycle to the next. For and a two‐station system, we develop a fast polynomial algorithm. The range problem is known to be NP‐complete. For the two‐station system, we develop a very fast optimal algorithm that uses a tight lower bound and an efficient procedure for finding complementary Hamiltonian cycles in bipartite graphs. Via a computational experiment, we demonstrate that range schedules are superior because not only do they limit the workforce fluctuations from one production cycle to the next, but they also do so with a minor increase in the total workforce size. We extend our results to the m‐station system and develop heuristic algorithms. We find that these heuristics work poorly for min range (R), which indicates that special structural properties of the m‐station problem need to be identified before we can develop efficient algorithms. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 577–590, 2016  相似文献   
47.
The success of any humanitarian aid mission is generally measured by the timeliness of critical supplies that are delivered to the affected area. However, a more interesting analysis may be to determine the effect of the aid on the overall satisfaction of the local population. The authors' research focused on the delivery of humanitarian aid to a notional region that was decimated by flooding with ships, landing craft and security personnel provided by the US Navy and Marines. While the research effort addressed naval force structure, the focus of the research was: (1) to assess different delivery methods for the aid; and (2) to determine how the aid delivery impacted the overall satisfaction of the local population. To examine both concerns, two simulation models were developed, with one examining the throughput of aid delivered during the operation, and the other the satisfaction of the population based on the humanitarian aid effort.  相似文献   
48.
49.
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号